掃描隧道顯微鏡作為一種掃描探針顯微術(shù)工具,掃描隧道顯微鏡可以讓科學(xué)家觀察和定位單個(gè)原子,它具有比它的同類(lèi)原子力顯微鏡更加高的分辨率。
此外,掃描隧道顯微鏡在低溫下(4K)可以利用探針尖部精確操縱原子,因此它在納米科技既是重要的測(cè)量工具又是加工工具。
*性
與其他表面分析技術(shù)相比,STM具有如下*的優(yōu)點(diǎn)
?、倬哂性蛹?jí)高分辨率,STM 在平行于樣品表面方向上的分辨率分別可達(dá)0.1埃,即可以分辨出單個(gè)原子。
?、诳蓪?shí)時(shí)得到實(shí)空間中樣品表面的三維圖像,可用于具有周期性或不具備周期性的表面結(jié)構(gòu)的研究,這種可實(shí)時(shí)觀察的性能可用于表面擴(kuò)散等動(dòng)態(tài)過(guò)程的研究。
③可以觀察單個(gè)原子層的局部表面結(jié)構(gòu),而不是對(duì)體相或整個(gè)表面的平均性質(zhì),因而可直接觀察到表面缺陷。表面重構(gòu)、表面吸附體的形態(tài)和位置,以及由吸附體引起的表面重構(gòu)等。
?、芸稍谡婵铡⒋髿?、常溫等不同環(huán)境下工作,樣品甚至可浸在水和其他溶液中 不需要特別的制樣技術(shù)并且探測(cè)過(guò)程對(duì)樣品無(wú)損傷.這些特點(diǎn)特別適用于研究生物樣品和在不同實(shí)驗(yàn)條件下對(duì)樣品表面的評(píng)價(jià),例如對(duì)于多相催化機(jī)理、超一身地創(chuàng)、電化學(xué)反應(yīng)過(guò)程中電極表面變化的監(jiān)測(cè)等。
?、?配合掃描隧道譜(STS)可以得到有關(guān)表面電子結(jié)構(gòu)的信息,例如表面不同層次的態(tài)密度。表面電子阱、電荷密度波、表面勢(shì)壘的變化和能隙結(jié)構(gòu)等 。
?、蘩肧TM針尖,可實(shí)現(xiàn)對(duì)原子和分子的移動(dòng)和操縱,這為納米科技的全面發(fā)展奠定了基礎(chǔ) 。
局限性
盡管STM有著EM、FIM等儀器所不能比擬的諸多優(yōu)點(diǎn),但由于儀器本身的工作方式所造成的局限性也是顯而易見(jiàn)的。這主要表現(xiàn)在以下兩個(gè)方面
?、賁TM的恒電流工作模式下,有時(shí)它對(duì)樣品表面微粒之間的某些溝槽不能夠準(zhǔn)確探測(cè),與此相關(guān)的分辨率較差。在恒高度工作方式下,從原理上這種局限性會(huì)有所改善。但只有采用非常尖銳的探針,其針尖半徑應(yīng)遠(yuǎn)小于粒子之間的距離,才能避免這種缺陷。在觀測(cè)超細(xì)金屬微粒擴(kuò)散時(shí),這一點(diǎn)顯得尤為重要 。
?、赟TM所觀察的樣品必須具有一定程度的導(dǎo)電性,對(duì)于半導(dǎo)體,觀測(cè)的效果就差于導(dǎo)體;對(duì)于絕緣體則根本無(wú)法直接觀察。如果在樣品表面覆蓋導(dǎo)電層,則由于導(dǎo)電層的粒度和均勻性等問(wèn)題又限制了圖象對(duì)真實(shí)表面的分辨率。賓尼等人1986年研制成功的AFM可以彌補(bǔ)STM這方面的不足 。
此外,在目前常用的(包括商品)STM儀器中,一般都沒(méi)有配備FIM,因而針尖形狀的不確定性往往會(huì)對(duì)儀器的分辨率和圖象的認(rèn)證與解釋帶來(lái)許多不確定因素 。